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Disilalkylene bridged cyclic triacetylenes are prepared and
subjected to the transition metal complex mediated reactions. In
particular, the reaction with (methylcyclopentadienyl)tricarbonyl-
manganese gave a variety of m-electron systems such as fulvene,
dimethylenecyclobutene, and biallene. ~ Structures and reactions
of these m-electron systems are described.

Oligomerization of acetylene, catalyzed by transition-metal
complexes, is an interesting class of reactions to lead to benzene
as a trimer and cyclooctatetraene as a tetramer.” In previous
studies, we have demonstrated that macrocyclic polyacetylenes
tethered by disiloxane bridges (-SiMe,-O-SiMe,-) undergo intra-
molecular cyclization to a variety of 7 electron systems,3 where a
vinylidene complex was isolated as an intermediate.* More re-
cently, it is demonstrated that not only cyclic but acyclic acetyle-
nes substituted by two silyl groups on each end undergo facile
1,2-silyl shift in the reaction with (cyclopentadienyl)tricarbonyl-
manganese under photochemical conditions to give 2,2-
disilylvinylidene cornplexes.5

In this paper, we report an interesting extension of these reac-
tions to macrocyclic polyacetylenes tethered by disilalkylene {-
SiMe,-(CH,),-SiMe,-} instead of disiloxane bridges. Since the
disilmethylene and other disilalkylene bridges are more rigid than
the disiloxane, multiple 1,2-silyl shift may be expected during the
reaction to new products involving novel reaction modes.

Preparation of the disilalkylene-bridged cyclic triacetylenes (1
- 3) is rather straightforward by the coupling reactions of the re-
spective dichlorosilanes with bis(ethynyl) Grignard reagents in
fair to good yields.
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First, intramolecular trimerization of the cyclic triacetylene 1
was examined. The reaction catalyzed by octacarbonyldicobalt
gave mainly a benzene derivative (4) but the reaction in the pres-
ence of 1.0 eq. of (Me-Cp)Mn(CO); under irradiation with a su-
per high-pressure mercury arc lamp with a filter (>300 nm) af-
forded fulvene (5) and dimethylenecyclobutene (6) derivatives.®

This is the first example of the formation of dimethylenecyclo-
butene by trimerization of acetylenes in which double 1,2-silyl
shift is required. Compounds 5 and 6, obtained as red and pale
yellow crystals, respectively, are very stable and fully character-
ized by NMR."? Interestingly in the latter reaction, the yield of
dimethylenecyclobutene 6 increased by increasing temperature
and vice versafor fulvene 5. (Yields in parentheses are those at
room temperature). Apparently, the second 1,2-silyl shift re-
quires higher activation energy.
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Figure 1. ORTEP drawing of 6.

The molecular structure of 6 was also determined by the X-ray
crystallographic method.” An ORTEP drawing of 6 is shown in
Figure 1. Only one example of highly distorted 1,2-di-#butyl-
3,4-diisopropyllidene-1-cyclobutene has been reported so far as
the structure of 3,4-dimethylenecyclobutene. 10 Although the
latter is strongly folded due to the steric compression, the cy-
clobutene ring of 6 is almost planar.

Irradiation of a hexane solution of 6 with a super high-
pressure mercury arc lamp without a filter resulted in the forma-
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tion of 5 in 12% yield. Although photochemical yield is low,
the reaction is a quite unique class of isomerization since it should
involve both reverse 1,2-silyl shift and ring enlargement.
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Cyclic triacetylenes with larger tethers, i.e. disilethylene- (2)
and disilpropylene-bridged (3) compounds are also subjected to
the Mn-complex catalyzed reaction. The compound 2 gave a
dimethylenecyclobutene (7) similarly.]1

At higher temperature, 7 was obtained preferably in high yield.
Yields in parentheses also indicate those at room temperature.
However, the compound 3 did not give dimethylenecyclobutene
any more. Instead, a biallene compound (8)12 and a small
amount of butatriene-yne (9)13 are obtained. Apparently, a
fused ring system, composed of 4-, 8-, and 9-membered rings as
expected for the formation of dimethylenecyclobutene, is very
much strained to cause facile rupture of the cyclobutene ring in
two ways.

Dimethylenecyclobutene 7 also undergoes similar ring rupture
by thermolysis to give 10 and upon irradiation to 11. Differ-
ence in the mode of isomerization by photolysis and thermolysis
is interesting but the reason is not clear at this moment.
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Persilyl-substituted 7 electron systems can be readily reduced
with lithium to dianions. Tetrakis(trimethylsilyl)ethylene and
silylbenzenes form dianions whose structures have been deter-
mined recently. 141 »

Dimethylenecyclobutene 6 can also be reduced with lithium
metal in DME to give a solution of the dianions. These dianions
were isolated as air-sensitive lithium complexes. Details will be
reported soon.
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Spectral data for 4: colorless crystals, mp 219 - 220 °C; 'H
NMR (CDCL) 6 -0.14 (s, 6H), 0.39 (s, 36H); “C NMR
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